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ABSTRACT

The assimilation of position data from Lagrangian observing platforms is underdeveloped in operational

applications because of two main challenges: 1) nonlinear growth of model and observation error in the

Lagrangian trajectories, and 2) the high dimensionality of realistic models. In this study, we propose a

localized Lagrangian data assimilation (LaDA) method that is based on the local ensemble transform

Kalman filter (LETKF). The algorithm is tested with an ‘‘identical twin’’ approach in observing system

simulation experiments (OSSEs) using a simple double-gyre configuration of the Geophysical Fluid Dy-

namics Laboratory (GFDL) Modular Ocean Model. Results from the OSSEs show that with a proper

choice of localization radius, the LaDA can outperform conventional assimilation of surface in situ tem-

perature and salinity measurements. The improvements are seen not only in the surface state estimate, but

also throughout the ocean column to 1000m depth. The impacts of localization radius and model error in

estimating accuracy of both fluid and drifter states are further investigated.

1. Introduction

While theArgo float program has been leveraged very

successfully in operational ocean data assimilation ap-

plications, surface drifters have been underutilized. The

trajectories of drifters transported by ocean currents

provide information about the underlying dynamics

and physical properties of the ocean. Poje et al. 2014

pointed out that Lagrangian experiments, aiming to

track large numbers of flow-following instruments, are

the most feasible means of simultaneously measuring

the submesoscale of ocean surface structure. The Global

Drifter Program (GDP) sponsored by the National

Oceanic and Atmospheric Administration (NOAA) is a

part in situ, part remote sensing program that provides the

capacity to produce a rough estimate of near-surface cur-

rents by tracking a large number of surface drifters de-

ployed at 15-m depth throughout the global ocean. Ocean

data assimilation systems have typically used temperature

and salinity measurements from surface drifters indirectly

via SST and SSS retrieval products (Bitterman and Hansen

1993;Melnichenkoet al. 2016), though they are sometimes

assimilated directly (Dong et al. 2017). The position

data of surface drifters are rarely used in any way,

though there have been some pioneering investigations

in reconstructing the mesoscale Eulerian velocity fields

based on observations of the Lagrangian positions

(Taillandier et al. 2006; Nilsson et al. 2012).

A traditional goal of data assimilation is to estimate

the state of a dynamical system by combining observations

with a numerical model approximation of that system.

Lagrangian data assimilation (LaDA) focuses on the as-

similation of the position information provided by La-

grangian instruments such as surface drifters. There are

two main approaches to assimilate Lagrangian measure-

ments. One approach applies a transformation from

geophysical track locations to an estimated Eulerian ve-

locity and assimilates this proxy measurement as a repre-

sentation of the instantaneous flow velocity of the system
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(Molcard et al. 2003; Ozgokmen et al. 2003; Taillandier

et al. 2006; Nilsson et al. 2012). Transforming position

measurements to Eulerian velocity additionally requires

determining a method to match the timing of the proxy

observations with themodeled velocity, such as the degree

of time averaging that should be applied.Assimilating such

velocity observations has been attempted and implemented

in forecasting systems such as the U.S. Navy’s Coastal

Ocean Model (NCOM) (Jacobs et al. 2014; Carrier et al.

2014, 2016) and the Mediterranean ocean Forecasting

System (MFS) (Nilsson et al. 2012), both showing prom-

ising improvements in characterizing the ocean currents.

An alternative approach (Ide et al. 2002; Kuznetsov et al.

2003) extends the original fluid model state to include the

drifter positions in an augmented state vector x5 (xF, xD)
T

and evolves this extended dynamical system. Given a suf-

ficiently short analysis cycle, this approach is able to update

the model states with high accuracy by utilizing the quasi-

linear error growth in the simulated drifter position and the

correlations of errors between the ocean tracer and ve-

locity fields. This Lagrangian approach may be more

effective than the assimilation of transformed Eulerian

velocity proxy observations in strongly nonlinear dynamic

models (Kuznetsov et al. 2003; Vernieres et al. 2011). In

this study, we investigate the Lagrangian approach.

Two issues that must be addressed in applying LaDA

and transitioning to operational ocean data assimilation

are: 1) nonlinear error growth in the modeled drifter tra-

jectories, and 2) the ability to scale to high-dimensional

systems. A thorough examination of issues regarding sys-

tematicmodel errors will be reserved for future study.Apte

et al. (2008) andApte and Jones (2013) showed that LaDA

can be applied with the ensemble Kalman filter (EnKF)

(Evensen 2004; Ide et al. 2002) with high-dimensional

model states, though it fails to capture dynamics with the

high-order nonlinearity because of the resulting non-

Gaussian distribution of error from the nonlinear trajec-

tory model. An alternative assimilation method that could

be used in the presence of this nonlinearity is the particle

filter (PF) (Salman et al. 2008; Santitissadeekorn et al.

2014). However, the canonical PF does not scale well to

high dimensions (Snyder et al. 2008).While new types of

PF have recently been proposed for high-dimensional

geophysical systems (van Leuween 2003; Penny and

Miyoshi 2016; Poterjoy 2016), none have yet been shown

viable for operational applications. A hybrid method

(Slivinski et al. 2015) has been proposed to address the

issues due to nonlinearity and high dimensionality at the

same time by updating the flow states using anEnKFwhile

updating the drifter states using a PF. The algorithm of

Slivinski et al. (2015) was examined using a framework

of perfect twin experiments with the linear shallow-water

equations. Results indicated that compared to the EnKF,

this hybrid approach produced improved estimates of the

Bayesian posterior and better tracked the true state.

The augmented-state LaDA methods described above

have so far only been applied to simplified models (e.g., the

linear shallow-water equations), and so far there has beenno

attempt to transition the work for viable use in operational

prediction. In this study, we propose a new augmented-state

LaDA as an extension of an ocean data assimilation system

(Penny et al. 2015) that is currently being transitioned to op-

erations at NOAA’s National Centers for Environmental

Prediction.Wefurther facilitate the transition toanoperational

environment by using the Geophysical Fluid Dynamics Lab-

oratory (GFDL)ModularOceanModel (MOM4p1) so that

we can update not only the surface fluid velocity fields, but

also tracer fields such as temperature and salinity spanning

from the surface down to the thermocline and below.

An observing system simulation experiment (OSSE)

is conducted to evaluate the performance of the proposed

LaDA method. OSSEs are widely used in validating the

impact of new observation (Atlas et al. 1985) and DA

system in both atmosphere and ocean prior to deployment

(Aksoy et al. 2012; Halliwell et al. 2014; Penny et al. 2015).

An OSSE experiment basically consists of 1) a nature run

of the numerical model representing the true atmosphere

or ocean, 2) a DA system that includes DA solution

method and a numerical forecast model, and 3) ob-

servations sampled from the nature run with realis-

tic errors. An ‘‘identical twin’’ OSSE refers to the use

of identical model configurations for both of the na-

ture run and forecast model. As the work done by

(Kuznetsov et al. 2003; Slivinski et al. 2015), we use this

‘‘identical twin’’ experiment as a preliminary verifica-

tion tool to examine the performance of the proposed

LaDA method. The perfect twin OSSE is a necessary

validation step for any new DA method, which must ul-

timately be followed by experiments assimilating real

observation data using an operational model configuration.

Intermediate steps may include relaxing the perfect twin as-

sumption by degrading the accuracy of the forecast model.

In section 2, we describe the general form of the

augmented-state LaDA and review the original LETKF

algorithm. The localized LaDA algorithm using LETKF

with an augmented state vector is introduced at the end

of this section. Section 3 details the design of the nu-

merical experiments and definitions of different met-

rics to evaluate the performance. Section 4 presents

results of applying LaDA to a simple configuration of

MOM4p1, and demonstrates the capability of the lo-

calized LaDA algorithm to produce an accurate anal-

ysis of not only simulated trajectories of drifters, but

also all prognostic ocean model variables such as

temperature (T), salinity (S), and flow velocities (U,V).

Section 5 provides discussion and future directions.
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2. Review of augmented-state method and LETKF

a. Augmented-state method

The augmented-state approach (Ide et al. 2002) ex-

tracts information carried by Lagrangian tracers by ex-

tending the model states as a combination of fluid and

drifter states:

x5

�
x
F

x
D

�
,

where xD contains data corresponding to the drifters

simulated by the oceanmodel, such as: longitude, latitude,

depth, as well as temperature and salinity when these are

observed by the drifters. In this study, we mainly consider

the case of drifter data consisting of position measure-

ments of longitude and latitude, while assuming the

drifters maintain a constant depth. Thus if there are ND

drifters, then xD is a 2ND-component vector and xF is of

dimension NF, the degrees of freedom of the fluid model.

The drifter advection equation is added to the original

fluid dynamical system as

8>><
>>:

dxfF
dt

5M
F
(xfF , t)

dxfD
dt

5M
D
(xfF , x

f
D, t)

.

As a clarifying example, suppose that only the posi-

tion data carried by Lagrangian drifters are observed.

Then the dimension of the observation space is 2ND and

the observations can be represented in terms of the

observation operator H and true states xt as

yo 5 ½0 I�
�
xtF
xtD

�
1 «5Hxt 1 « ,

where

H5 ½0 I� and «~N(0,R).

The matrix I in the above formula is an identity matrix

of dimension 2ND 3 2ND. The quantity « is a Gaussian

random error, with the 2ND 3 2ND observation error

covariance matrix R. The forecast time length must be

chosen sufficiently small to maintain approximately

Gaussian error statistics. The augmented-state LaDA

provides an estimator of xi11 5 (xF, xD)
T at time ti11

given the observations yoi11. With the Gaussian as-

sumption, the Kalman filter–based methods attempt to

provide the best linear unbiased estimator by taking

advantage of the estimated observation error covariance

matrix R and the estimated background error co-

variance matrix P. Our background error covariance

matrix is composed of the combined fluid and drifter

states defined as

P5

"
P
FF

P
FD

PT
FD P

DD

#
,

where PFF, PFD, and PDD denote the background error

covariance matrices of the fluid state vector, the cross co-

variance between the fluid and drifters state vectors, and the

drifters state vector, respectively. The detail definition of the

components of these background error covariance matrices

will be specified in the later section. The ensemble Kalman

filter (EnKF) updates the prior error covariance matrix by

computing the sample error covariance matrix from en-

semble perturbations around the ensemble forecast mean.

b. LETKF

The LETKF is an ensemble square root filter (EnSRF)

proposed by Hunt et al. (2007) as an extension of

works by Bishop et al. (2001), Hamill et al. (2001) and

Houtekamer and Mitchell (1998), using the localization

approach of Ott et al. (2004). There are generally two

kinds of localization approach: in observation space

(R-localization), and in model space (B-localization)

(Greybush et al. 2011). The LETKF uses R-localization,

which selects and weighs local observations in a prescribed

region around each grid pointwhile excluding observations

outside this region. Salman et al. 2006 shows that a proper

selection of the localization region is beneficial in using

EnKF to assimilate the drifter positionswithin the shallow-

water system. To preserve vertically consistent dynamics in

each ocean column, no localization is applied in the vertical

(Penny et al. 2015). As a consequence, surface observa-

tions impact the analysis of the entire water column. Be-

cause previous studies have found superior results using

this approach to vertical localization when applying

LETKF in the ocean (Penny et al. 2015; Sluka et al. 2016),

we only consider experiments applying variations in the

horizontal localization radius.

After the localized region is determined, we compute

an analysis update to the center grid point at all depths.

In general, the EnKFs assume Gaussian error statistics,

which are estimated from the perturbations of the en-

semble forecast around the ensemble forecast mean

state. The analysis solution is thus confined to a maximum

(K2 1)-dimensional linear space defined by the ensemble

states, where K is the number of ensemble members. By

applying the localization technique, we allow the global

analysis to be formed from a larger dimensional space,

though the localized solution is still formedwithin a linear

space limited by the ensemble size. The localization

makes it possible to approximate the solution of spa-

tially extended high-dimensional nonlinear problems
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with better accuracy. At the analysis step, instead of

minimizing the original cost function of EnKF:

J(x)5 (x2 xf )T(Pf )
21
(x2 xf )

1 (yo 2Hx)TR21(yo 2Hx) ,

with respect to the model state vector x, LETKF mini-

mizes the equivalent cost function:

~J(w)5 (k2 1)wTw

1 (yo 2 yf 2Yfw)TR21(yo 2 yf 2Yfw) , (2.1)

with respect to w within each localization region, where

w is defined as the ensemble weight vector using the

formula x5 xf 1Xfw. The linear transform applied as

part of the LETKF is an efficient implementing tech-

nique to update the ensemble deterministically by post-

multiplying the forecast ensemble with a linear transform

matrix (Bishop et al. 2001; Katzfuss et al. 2016). The

LETKF algorithm is easily parallelized by calculating the

analysis independently at each grid point, thus facilitates

the technical transition to more realistic applications.

c. LETKF for augmented-state LaDA

Combining sections 2a and 2b, we denote the LETKF

method applied to solve the Lagrangian problem as

LETKF-LaDA. To simplify the description, we first

consider the case when drifter locations are observed

and the dimension of observation space is 2ND. A more

general case considering the surface temperature and

salinity measurement on drifters is elaborated at the end

of this section.

1) Run the dynamical model to obtain the global

ensemble forecast states x
f (k)
[g] 5 (x

f (k)
F[g], x

f (k)
D[g])

T
(k 5 1,

2, . . . , K), then obtain the corresponding global

ensemble mean xf[g] 5 (xf
F[g], x

f

D[g])
T
and the forecast

error perturbation matrix Xf

[g], whose kth column is

x
f (k)
[g] 2xf[g]. The subscript ‘‘[g]’’ indicates the global

state vector.

2) Apply the specialized observation operator H de-

fined in section 2a to the augmented model states

in order to form the ensemble y
f (k)
[g] of the fore-

cast observation vectors by y
f (k)
[g] 5Hx

f (k)
[g] . Compute

the corresponding mean yf[g], and error perturbation

matrix Yf

[g], defined in observation space. In this

case, we assume all observation data are carried by

the drifters so that y
f (k)
[g] 5 x

f (k)
D[g], the mean vector

yf[g] 5 xf
D[g] and 2ND 3Kmatrix Yf

[g] 5Xf

D[g]. For our

experiments, the global observation is denoted as

yo[g] and the observation error covariance matrix

R[g] is defined as a diagonal matrix with diagonal

entries specified as the observation variance s2,

which will be discussed in section 3.

FIG. 1. (a) The localization region defined to update the fluid states xf
F[l] at grid point (i, j), the white circle at the

center of the figure. The background dashed lines represent the mesh grids of the forecast model. (b) The locali-

zation region defined to update the drifter states xf
D[l] associated to a forecasting drifter ID n. The center white

triangle is located at the forecast ensemble mean position of drifter number n. In both figures, gLETKF denotes the

radius of the localization region and the squares represents the observation drifter locations. Those observation

drifters inside the circles (red squares) are marked by their IDs as the localized observation.
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3) Determine the local analysis of the LETKF-

LaDA system, using the local arrays of the global

terms: xf[l], X
f

[l], Y
f

[l], R[l], y
o
[l] and yf[l]. The selection

approach of the localization region depends on

the type of the analysis variables to be updated.

For the fluid variables, we apply the localization

region as a cylinder centered at a horizontal grid

point (i, j) with horizontal localization radius

gLETKF (see Fig. 1a), which will be specified in

section 3. For global model state variables xf[g] and

Xf

[g], rows associated to the fluid variables at

this grid point (i, j) from all the depth levels are

chosen to formulate their corresponding local

variables xf
F[l] and Xf

F[l]. For example, suppose the

prognostic flow states are gridded velocities uF
and yF, then we have

xf
F[l] 5

2
66666664

u
f
F(i, j, 1)

y
f
F(i, j, 1)

..

.

uf
F(i, j,h)

y
f
F(i, j,h)

3
77777775
2h31

Xf

F[l] 5

2
6666664

u
f (1)
F (i, j, 1)2 uf

F(i, j, 1) � � � u
f (K)
F (i, j, 1)2 uf

F(i, j, 1)

y
f (1)
F (i, j, 1)2 y

f
F(i, j, 1) � � � y

f (K)
F (i, j, 1)2 y

f
F(i, j, 1)

..

. ..
.

u
f (1)
F (i, j, h)2 u

f
F(i, j, h) ::: u

f (K)
F (i, j, h)2 u

f
F(i, j,h)

y
f (1)
F (i, j, h)2 y

f
F(i, j, h) ::: y

f (K)
F (i, j,h)2 y

f
F(i, j, h)

3
7777775
2h3K

, (2.2)

where h is the bottom level of the model. In Fig. 1a,

all the observed drifters located in this localized region

are marked by their IDs and we define the number of

localized observed drifters as ND[l]. We then choose

FIG. 2. Temperature and salinity initial conditions provided by SODAon 2 Jan 1981 at location 258N, 1758E varying

from 5 to 5316m. The thermocline is located below 75m and above 235m.
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the rows of Yf

[g], y
o
[g] and yf[g] related to these marked

drifter IDs to create 2ND[l] 3 K matrixYf

[l], and

2ND[l] 3 1 vectors yo[l] and yf[l]. Similarly, rows and

columns are chosen to formulate 2ND[l ] 3 2ND[l ] di-

agonal matrix R[l ]. Figure 1b illustrates the approach to

define the localization region in order to update the

local state variables of the simulated drifters. As shown

in Fig. 1b, the selection of the localization region is as-

sociated with each drifter ID rather than each model

grid point. For each simulated drifter ID n, its forecast

ensemble mean location (lf
n, un

f ) is defined as the cen-

ter of the corresponding localization region. Localized

model state vector xf
D[l] and error perturbation matrix

Xf

D[l] include all the entries associated to this ID n:

xf
D[l] 5

2
4 l

f
D,n

uf
D,n

3
5 and

Xf

D[l] 5

2
4 l

f (1)
D,n 2 lf

D,n � � � l
f (K)
D,n 2 lf

D,n

uf (1)
D,n 2uf

D,n � � � uf (K)
D,n 2uf

D,n

3
5. (2.3)

Similarly to the approach used to update the fluid state,

yf[l], Y
f

[l], y
o
[l], and R[l ] can be defined accordingly based

on the localization region. Among all the marked IDs,

the observation associated to its own drifter ID n

is included. To simplify the notation, the subscriptions

‘‘F[l]’’ in (2.2) and ‘‘D[l]’’ in (2.3) of themodel variables

(i.e., xf andXf ) are all replaced by ‘‘[l]’’ in the next step.

4) The remaining steps follow the original LETKF

(Hunt et al. 2007), repeated here for completeness.

Form the local analysis error covariance for the

ensemble weight vector w in (2.1) and the corre-

sponding weight matrix as

~Pa
[l] 5 [(K2 1)I/r1 (Yf

[l])
T
R21

[l]Y
f

[l]]
21

and

Wa
[l] 5 [(k2 1)~Pa

[l]]
1/2

,

where r is the covariance inflation factor. The ensemble

weight vector used to compute the localmean analysis is

wa
[l] 5

~Pa
[l](Y

f

[l])
T
R21

[l] (y
o
[l] 2 yf[l]) , (2.4)

wherewa is theminimizer of the cost function ~J in (2.1).

This mean is added to each column ofWa
[l] to form aK-

by-K weighting matrix with column vectors fwa(k)
[l] g.

Each local analysis ensemble member is computed as

x
a(k)
[l] 5 xf[l] 1Xf

[l]w
a(k)
[l] .

The local analysis ensemble mean is determined as

xa[l] 5 xf[l] 1Xf

[l]w
a
[l] .

FIG. 3. (a) The sea surface height (SSH) of the nature run at the end of the 6-month spinup procedure (contour

interval is 0.1m); (b) sampled drifter trajectories in 91 days are shown with SSH (m) at the terminal time. Initial

drifter locations are marked as triangles in (a) and asterisks in (b).
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Specifically, the analysis mean associated to a flow

state variable is determined by the corresponding

mean weightwa
[l]. The covariances between the given

flow state variable and the drifter state variables are

included in ~Pa
[l] within the definition of wa

[l] in (2.4).

5) Collect all the local analysis states at each grid point

and each drifter ID to form the global analysis state

vector:

x
a(k)
[g] 5

2
4 x

a(k)
F[g]

x
a(k)
D[g]

3
5 .

This algorithm can be extended to a more general

case in which additional measurements of the fluid

variables are associated with each drifter. For exam-

ple, if additional temperature and salinity measure-

ments are made for each drifter ID n, xf
D[l] and Xf

D[l]

(2.3) in step 3 can be extended as

xf
D[l] 5

2
66666664

l
f
D,n

uf
D,n

T
f
D,n

S
f
D,n

3
77777775

and

Xf

D[l] 5

2
66666664

l
f (1)
D,n 2l

f
D,n � � � l

f (K)
D,n 2 l

f
D,n

uf (1)
D,n 2uf

D,n � � � uf (K)
D,n 2uf

D,n

T
f (1)
D,n 2T

f
D,n � � � T

f (K)
D,n 2T

f
D,n

S
f (1)
D,n 2S

f
D,n � � � S

f (K)
D,n 2 S

f
D,n

3
77777775
.

The remaining steps in the above algorithm are

the same.

The above further extension of the system allows a

direct differencing of the observed drifter measure-

ments with the modeled drifter measurements (i.e.,

yo 2Hxf 5 yo 2 xfD). We assume the interpolation

operator is automatically embedded in the drifter

dynamic model MD rather than explicitly relying on

an observation operator H to map the gridded

temperature and salinity states to the drifter posi-

tions at the appropriate time.

3. Experimental setup

a. The numerical ocean model and spinup procedure

We use the ‘‘identical twin’’ approach in OSSEs to

evaluate the impact of LETKF-LaDA. The nature run

and the forecast model in all experiments use the GFDL

subtropical double-gyre configuration of the B-grid

FIG. 4. Absolute error comparisons between the control run

(i.e.jxC 2 xtj) and the LETKF-LaDA (i.e., jxa 2 xtj) in ocean flow

fields temperature (T), salinity (S), and velocities (U, V) at end of

91 days. The errors are shown in the longitude–latitude plane and

averaged from the top layer 5m to the 235m. The true drifter lo-

cations at the end of 91 days are marked by closed triangles in the

first contour figure of the left column.
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hydrostatic non-Boussinesq ocean model MOM4p1

(Griffies 2008). We work in a rectangular, closed basin

on a beta plane with longitude ranging from 08 to 108E
and latitude ranging from 158 to 358N. Ocean circula-

tion is driven by the zonal wind stress defined as

Fl(u)5 0:1 sin[p(u2 208N)/108N] Nm22, where u is

the latitude. Fifty constant z-level coordinates are used

extending down to 5500m.

The nature run is generated using a 1/48 horizontal res-
olution with integration time step Dt 5 1800s. We specify

the initial conditions of the temperature and salinity fields

by replicating a point profile of temperature and salinity

state estimates from the Simple Ocean Data Assimilation

(SODA), version 3 (Carton et al. 2018a,b), on 2 January

1981 (Fig. 2) and then initializing the model with this hor-

izontally uniform stratification. The true drifter locations

are simulated in the nature run, randomly initialized in the

energetic region 208–278N, 2.58–58E, as shown in Fig. 3a.

The deployment depth, 15m, is the same as the official

fixed depth assigned for the NOAA GDP surface drifters.

We construct an ensemble of wind stress fields by

adding a constant to the zonal component of the true

wind field with themagnitude, which is randomly chosen

by u ; N(0, 0.1) Nm22. This addition of the constant is

applied uniformly for all grid points and time steps [i.e.,

F
(k)
l (u)5Fl(u)1 u(k) (k5 1, 2, . . . ,K)]. To initialize the

ensemble, we first spin up each ensemble ocean member

for six months with the perturbed atmospheric condi-

tions F
(k)
l . All experiments use an ensemble sizeK5 40.

We next populate 50 drifters (ND 5 50) simulated at

15m depth, initialized at the ‘true’ positions identically

for each ensemble member. The ensemble members are

then integrated for another 16 days to generate the ini-

tial ensemble spread of drifter positions. We take ad-

vantage of an embedded drifter module in MOM4p1

that provides output of drifter positions as well as tem-

perature and salinity at the drifter locations. Within this

module, the drifter positions are calculated by in-

tegrating the corresponding velocities obtained after

applying a bilinear interpolation to the gridded ocean

velocity fields at the corresponding depth. The temper-

ature and salinity data are determined directly by bi-

linear interpolation of the gridded temperature and

salinity fields to the corresponding drifter locations.

The LETKF-LaDA system uses a daily analysis cy-

cle following Jacobs et al. (2014). The optimal choice of

analysis cycle window depends on the error doubling time

of the modeled drifter positions, and remains an open

question. The observations are assimilated daily with po-

sitioning errors drawn from a normal distribution using a

prescribed standard deviation of s 5 0.18 in both longi-

tude and latitude. The parameter s is determined by av-

eraging the daily error growth of all the 50 drifter locations

FIG. 5. Absolute error comparisons between the control run

(i.e., jxC 2 xtj) and the LETKF-LaDA (i.e., jxa 2 xtj) in ocean flow

fields temperature (T), salinity (S), and velocities (U,V). The errors are

shown in the latitude–depth plane and averaged along longitude from

0.6258 to 7.1258E. The x axis stands for the latitude interval 22.1258–
27.8758N, while the y axis represents the depth level from 5 to 600m.
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deployed in 40-member flow ensemble generated by the

first step of spinup process as previously described. We

investigate the influence of the horizontal localization

radius and model resolution on the performance of the

LETKF-LaDA. We define the horizontal localization

radius, gLETKF, as a multiple of the baroclinic Rossby

radius of deformation (RRD) at the respective latitudes

(Chelton et al. 1998). The choice of gLETKF in different

experiments will be specified in the next section. None of

the experiments use multiplicative inflation (i.e., r 5 1).

The control experiment is initialized using the ensemble

mean ocean and drifter states at the end of the two-step

spinup process.

b. Error metrics

The locations of drifters in this work are based on

longitude–latitude coordinates on a spheroid surface in-

stead of the Cartesian coordinates on a flat surface as used

in previous augmented-state LaDA studies (Salman et al.

2006). In this section, we utilize the measurements of

geophysical distance to evaluate the difference between

two locations of interest. The errors in drifter states are

computed by taking the average distance between en-

semble mean positions and the true positions of all the

drifters:

RMSE
D
5

1

N
D

�
ND

n51

d[(lt
D,n,u

t
D,n), (lD,n

,u
D,n

)],

where d[(�, �), (�, �)] is the function to compute the

geophysical distance between two locations based on

their latitude and longitude coordinates. Salman et al.

(2008) defined a dimensionless fluid field norm in the

horizontal direction that evaluates the error in terms of a

percentage of the true fluid state. The error corre-

sponding to the velocity field is formulated as a type of

kinetic energy field. Because the double-gyre model

used for our experiments has the additional complexity

of including multiple vertical layers, we sum the hori-

zontal errors from the top depth level ho to level h:
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FIG. 6. (a) Time variation of analysis RMSE and ensemble spread in velocities at confluence region (23.6258–26.6258N, 0.1258–2.8758E)
averaged through all the depth levels; (b) time variation of analysis RMSE (in degree) in drifter displacements.
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where TF(i, j, m), SF(i, j, m), uF(i, j, m) and yF(i, j, m)

indicate the flow states at the grid point (i, j,m), in order

to verify the convergence of the proposed LETKF-

LaDA approach. We use the RMSED defined above to

quantify the norm of the drifter states.

Due to the relationship between geostrophic currents

and sea surface height (SSH), we are also interested in

the forecast error correlation between the drifter states

and the surrounding flow fields. For a specific drifter

with ID n, we denote its true position as (lt
D,n, u

t
D,n) and

the drifter state corresponding to this ID as xtD,n. The

fluid state at the horizontal grid point (i, j) with depth h is

specified as the vector xfF(i, j, h). The error correlation

between the drifter state and its closest vertical ocean

field is denoted as

r
n
(i, j, h)5Corr[«f

F(i, j,h), «
f
D,n]

5
Ef[xfF(i, j,h)2 xtF][x

f
D,n 2 xtD,n]gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ef[xfF(i, j, h)2 xtF]
2g

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[(xfD,n 2 xtD,n)

2
]

q ,

(3.2)

where E(d) denotes the mean. Similarly, the error cor-

relation corresponding to SSH is

r
SSH,n

(i, j, h)

5Corr[«f
F(i, j, h), «

f
SSH]

5
Ef[xfF(i, j,h)2 xtF](x

f
SSH 2 xtSSH)gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ef[xfF(i, j,h)2 xtF]
2g

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[(xfSSH 2 xtSSH)

2
]

q , (3.3)

where xSSH is selected at the closest gridpoint position to

the nth drifter location.

4. Results

We first set the localization radius of LETKF-LaDA

as gLETKF 5 3LR, where LR stands for the approximate

RRD at the corresponding latitude, and implement the

LETKF-LaDA for 91days (about 3 months). Within

this time period, some of the true drifters complete one

circuit around the gyre (see Fig. 3b). Figure 4 depicts

contours of absolute error averaged from the top layer

FIG. 7. Error norms of temperature, salinity, kinetic energy, and drifter states (RMSED) in the given period [0, 91]

using formula (3.1). The error norms of the ocean flow fields are aggregated from 5 to 1000m depth (i.e., ho 5 5m

and h 5 1000m). In each subplot, we show the experiment results of control run (blue solid line), 5LR (orange

dotted line), 4LR (red dash–dotted line), 3LR (purple solid line), 2LR (green solid line), and LR (cyan dashed line).
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5m to the 235m. Since the initial drifter positions are all

close to the gyre, a large reduction in error occurs within

the western-central region for all prognostic model

variables. Figure 5 shows that the error is reduced not

only in the surface fields but also at deeper levels. The

relatively small error reduction in the northern and

southern boundary regions is due to sparse observation

coverage (Fig. 4). Figure 6a highlights the time variation

of the analysis RMSEs and ensemble spreads in veloci-

ties at confluence region (23.6258–26.6258N, 0.1258–
2.8758E). The exponential decays in both of the RMSEs

and ensemble spread of flow velocities at the confluence

region are able to guarantee the ensemble drifters at this

region distributed around the truth with small ensemble

spreads and therefore provide accurate analysis states.

Salman et al. (2008) shows that different drifter de-

ployments can affect the convergence of the error in

drifter displacements. In Fig. 6b, we display the time

variation of analysis RMSE for sampled drifters labeled

in Fig. 3b. The RMSE of most of the drifters are below

the prescribed observation error standard deviation

(i.e., 0.18), except for the drifter number 37 circuiting

near the confluence. It is observed that this drifter has a

sudden increase in the RMSE as it is about to complete

one loop and then the error gradually decays in the end.

In general, the performance of the LETKF-LaDA

depends on the localization radius, which affects both the

extent of influence by observations and the reduction of

nonlinear error in the prognostic model states. In the

following discussions, we first determine an effective lo-

calization radius for the given system and then apply this

radius for the remainder of the experiments.

a. Impacts of varying localization radius gLETKF

Using the 1/48 horizontal resolution, we vary the lo-

calization radius: gLETKF5 5LR, 4LR, 3LR, 2LR, andLR.

FIG. 8. Error in temperature, salinity, and kinetic energy at the end of 91st DA cycle along the vertical direction with experiments of

localization radius 5LR, 4LR, 3LR, 2LR, andLRLR. These quantities are evaluated by formula (3.1) at each individual vertical level with ho
5 h. The control run is not shown in these figures because its errors largely exceed the scale of the given results in all fields.
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Each experiment applies the LETKF-LaDA over 91

analysis cycles. We compare the error variations of the

cycled analysis states to the control run. Figure 7 shows

the results of percentage error norm defined in Eq. (3.1).

We compare the errors of the analysis mean with the

control run. For the temperature, salinity, and kinetic

energy fields, we sum the squared errors in percentage

norm from 5 to 1000m depth. Cases using 3LR and 2LR

produce the lowest errors over the course of the experi-

ments. The 2LR localization radius produces slightly

lower errors than 3LR radius in controlling the mean

drifter error distance below 3kmwithin the 1/48meshgrid

map. The experiment with 5LR radius generates the most

accurate analysis in model prognostic fields at end of the

first cycle, however it begins diverging after 60 cycles due

to continuous error growth in drifter states beginning

after 5 cycles. Using the smallest attempted localization

radius LR, the error decays relatively slowly in both

the prognostic fields and estimated drifter positions in

the first 60 cycles. The errors in prognostic fields reach a

low value comparing with other radii at the end of this

time period. With localization radius LR, the LETKF-

LaDA produces in a sudden reduction in error between

60 and 80days, however this error reduction does not

appear stable. The sudden ‘‘shock’’ in error after the first

cycle of LETKF-LaDAwith the various localization radii

may be the consequence of an instability generated by a

large change in the state variables.

To monitor the performance of the LETKF-LaDA in

the vertical using varying localization radii, we consider

the analysis states at the end of the 91st analysis cycle and

compute the error in each horizontal layer from 5 to

1000m depth (see Fig. 8). In the temperature field, all

errors have a similar shape in the vertical direction with a

maximum at approximately 270m depth. Both of the 3LR

and 2LR localization radii produce smaller errors at all

depth levels than all the rest of the localization radii. The

experiment with localization radius LR behaves similarly

to those with radii 3LR and 2LR below the thermocline,

though a marginally larger error is produced in the top

layer (5–200m). For salinity, experiments using 3LR and

2LR radii have the lowest error above 270m depth, while

errors in all experiments decay to almost the same value

at deeper levels. All LETKF-LaDA cases have difficulty

in reducing error in kinetic energy below 300m depth,

though the case using a radius of 3LR produces the

smallest error in all depth levels.

The LETKF-LaDA requires the growth in drifter

position error to grow quasi-linearly in time for the

duration of the analysis cycle. The degree of nonline-

arity depends on the stability of the dynamics, being

greatest in the gyre region, and for the purpose of LaDA

depends upon the time between observations. To eval-

uate the performance of LETKF-LaDA in updating the

state in the presence of varying degrees of nonlinearity,

we examine trajectories for two different drifter IDs

(Fig. 9). We select one drifter in the gyre (number 44)

and another in a region with relatively slow approxi-

mately linear flow (number 40). For both the linear and

nonlinear trajectories, the LETKF-LaDA is able to

track the true drifter trajectories.

In summary, with the quantitative and qualitative

comparison in all the states and drifter trajectories, we

find that the LETKF-LaDA with localization radii 3LR

and 2LR result in the lowest errors in the state estimate.

b. Comparing to conventional assimilation of in situ
temperature and salinity

Drifters may be equipped not only with a GPS loca-

tor but also sensors providing in situ measurements

FIG. 9. Drifter trajectories of nature run (black) compared to the control run (blue) and LETKF-LaDA varying the localization radius:

5LR, 4LR, 3LR, and 2LR in 91 days. All cases use identical drifter starting positions. The green line (2LR) is the closest trajectory to the

black line (obs) at the end for both of the drifters.
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(Lumpkin and Pazos 2007). In this section, we add

temperature and salinity observations to the simu-

lated Lagrangian drifters and compare the perfor-

mance of three observing strategies: 1) using LETKF

to assimilate only the in situ temperature and salin-

ity observations at the surface (no position in-

formation), 2) using LETKF-LaDA to assimilate

only drifter positions, and 3) using LETKF-LaDA to

assimilate both drifter locations and in situ temper-

ature and salinity observations with observation er-

rors sT 5 0.18C and sS 5 0.1 psu. All experiments use

the localization radius gLETKF 5 3LR, as determined

in the previous section.

Figure 10 summarizes the time variation of error

in the estimated ocean state. The LETKF-LaDA

experiments provide more accurate estimates of

the prognostic model state variables than that of the

conventional T/S DA after passing through the

‘‘shock’’ period in all the flow fields. The addition

of the in situ data to some extent reduces the ‘‘shock’’

in temperature and salinity error for LETKF-LaDA

in the first few cycles. In the vertical comparison at

the terminal time (see Fig. 11), the LETKF-LaDA

outperforms assimilation of conventional observa-

tions at all depths using the metric given by formula

(3.1). Assimilating the combination of in situ and

Lagrangian position data further improves the accu-

racy of the LETKF-LaDA salinity estimates in all

layers and temperature in most of the layers except for

the levels between 100 and 200m, though this results

FIG. 10. Error norms of temperature, salinity, and kinetic energy in the given period [0, 91] using formula (3.1). The error norms of the

ocean flow fields are aggregated from 5 to 1000m depth (i.e., with ho 5 5m and h 5 1000m). In each subplot, we show the experiment

results of control run (blue solid line), assimilation of surface drifter measured T and S (orange dotted line), LETKF-LaDA assimilating

only drifter positions (red dashdotted line), and LETKF-LaDA assimilating both drifter positions and surface drifter measured T and S

(purple solid line).
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in a smaller improvement of the estimations in kinetic

energy blow 450m.

c. Model resolution

One factor that could have an impact on the con-

vergence of the LETKF-LaDA is errors in drifter tra-

jectories caused by the model grid resolution. The

insufficient modeling flow caused by a coarse grid res-

olution can possibly result in a relatively large dis-

crepancy between the forecast drifter and the truth.

This is a particular concern for transitioning to the as-

similation of real observational data. To examine sen-

sitivity to resolution, model forecasts are obtained

using configurations of 1/38 and 1/28 horizontal grid

resolutions. The initial coarser ensemble fields are

generated by applying bilinear interpolation to the

previous initial ensemble fields defined in 1/48 gridding

system as in section 3a. Figure 12 shows a comparison

of the SSH fields in one-day forecast generated by

models of different resolutions before we start applying

LETKF-LaDA. Forecast models of coarser grids fail to

represent the scale of SSH at the center of the gyres and

create larger errors at eastern edge of the gyre. LETKF-

LaDA is performed with localization radius 3LR.

We observe in Fig. 13 that assimilating Lagrangian

data is possible with a forecast model resolution that

resolves the dynamics present in the observations (e.g.,

in this case with a perfect model). Experiments using

both coarser resolutions fail to stabilize the error growth

in ocean and drifter states due to the exponential growth

in the drifter position errors.

The above results show that the accuracy of the fore-

casting model influences the performance of LETKF-

LaDA. The relation between the convergence of

FIG. 11. Vertical profile of change in error for temperature, salinity and kinetic energy at the end of 91st DA cycle with experiments of

traditional DA assimilating T and S, LETKF-LaDA with and without assimilation of T and S. These quantities are evaluated by formula

(3.1) at each individual vertical level with ho5 h. The control run is not shown in these figures because its errors largely exceed the scale of

the given results in all fields.
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LETKF-LaDA and the prognostic flow scale of the

forecasting model must be examined in the future

with a high-resolution model.

d. Relation between the Lagrangian states and SSH

Due to the geostrophic relationship between the sur-

face currents and pressure in the midlatitudes, and be-

cause SSH can be used as a proxy for integrated pressure

in the upper ocean column, we expect some redundancy

in the information provided by surface drifter position

data and satellite altimeter measurements. For example,

Carrier et al. 2016 showed that assimilating the combi-

nation of the along-track SSH and the Eulerian flow

velocity approximated by drifter locations can provide

improved forecasts of SSH, compared to using either the

observations of the along-track SSH or the Eulerian

velocity alone. Similarly, we expect the LETKF-LaDA

will be a viable method to improve forecasts of SSH by

taking advantage of drifter position data.

We use the error correlation between the drifter state

variables (e.g., longitude and latitude) and the ocean

prognostic fields (e.g., temperature, salinity and veloc-

ity) to extract information from the Lagrangian position

data that can be used to update the subsurface state.

Because the general quasigeostrophic balance be-

tween the surface currents and dynamic ocean height

fields indicates that a passive drifter will move fol-

lowing the contour of SSH, we infer that the correla-

tion between the SSH forecast error and the Eulerian

velocity forecast error is intertwined with the forecast

errors corresponding to the drifter positions. To verify

this, we spin up the ensemble as introduced in section

3a and compute the SSH (rSSH) and drifter forecast

error correlations (rlonand rlat) using the formula (3.3)

and (3.2) defined in section 3c before implementing

the LETKF-LaDA.

We examine error correlations between the drifter

positions and the 3D fluid and compare in the

longitude–depth plane. For example, the rlon and rlat
associated with drifter number 14 share similar pat-

terns with the contour profile of rSSH for all the flow

fields (Fig. 14). Continuing the experiments for all the

other drifters, we summarize the connection between

rSSH and rlon, rlat in longitude–depth plane as following:

for a specific drifter ID n,

r
SSH,n

’ar
lon,n

1br
lat,n

, a}2u
n

and b} sign(u
n
)y

n
,

where (un, yn) is the drifter velocity of drifter ID n.

For those drifters located in unstable portions of the

flow, a large ensemble size is needed to verify the

above relation numerically. In the last row of Fig. 14,

the estimations of rSSH are determined by this for-

mula for drifter number 14, using the coefficients:

a52un/(junj1 jynj) and b5 sign(un)3 yn/(junj1 jynj).
Comparing the first three rowswith the last row in Fig. 14,

we observe that with this approximation formula, rlon
and rlat partially recover the positivity and negativity of

the correlations rSSH in the given region, though the

magnitude is different. The strongly linear relation

between rlon/rlat and rSSH suggests a similar relation in

their corresponding error covariance matrices.

Verrier et al. 2017 shows that the forecasts of SSH and

ocean currents are continuously improved when tran-

sitioning from one altimeter to two altimeters with

a relative error reduction of almost 30% under the

FIG. 12. SSH contour comparisons between the nature run and 1-day forecast ensemble means generated by

forecast models of 1/48, 1/38, and 1/28 resolutions before we start applying the LETKF-LaDA.
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framework of OSSEs. The addition of the third altimeter

further improves the results with additional relative error

reduction of about 10%. Since increasing the number

of altimeters improves forecasts of sea level and ocean

currents, using LaDA of surface drifters, which have a

similar error covariance/correlation relationship with the

ocean prognostic variables as the sea surface height er-

rors, should provide the potential for further improve-

ment of the ocean surface currents, especially where

there are gaps in the altimeter observations.

5. Discussion and outlook

We introduced a localized augmented-state La-

grangian data assimilation implemented with the local

ensemble transform Kalman filter (LETKF-LaDA).

Extending previous work with augmented-state LaDA

methods, we applied this method to an ocean model

with 3D dynamics and representation of temperature

and salinity tracers. The LETKF-LaDA was found to

provide more accurate analyses throughout the ocean

column from the surface to 1000m depth by assimi-

lating drifter position observations, compared to the

conventional assimilation of in situ drifter measure-

ments of temperature and salinity measurements. The

reason why a growing misfit error for a drifter circuiting

near the confluence is shown at the end of the first loop

remains as an open question.

In the context of the LETKF-LaDA, we studied the

impact of localization radius on stabilizing the error

growth over time. We found that with radius 5LR, five

times the baroclinic Rossby radius of deformation, the

error decays fast in the first DA cycle but the nonlinear

error grows unchecked over longer time.We also found

that if the localization radius is too small (e.g., LR)

error often grows unconstrained in regions far away

from the observations. The best performing localiza-

tion radius in our experiments with the LETKF-LaDA

assimilating 50 drifters deployed randomly around the

gyre was between 2LR and 3LR.

Correlations between errors in the drifter locations

and ocean states (rlon and rlat) were also studied. For a

FIG. 13. Error norms of temperature, salinity, kinetic energy, and drifter states (RMSED) in the given period [0,

91] using formula (3.1). The error norms of the ocean flow fields are aggregated from 5 to 1000m depth (i.e., ho 5
5m and h 5 1000m). In each subplot, we show the experiment results of control run (blue solid line), LETKF–

LaDA with forecast model of 1/28 (orange dotted line), 1/38 (red dashed–dotted line), and 1/48 (purple solid line)

resolutions.
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specific drifter, rlon and rlat had an approximately linear

relation with the SSH error correlation (rSSH) at the

drifter location. Since the error correlation is an in-

fluential factor in the performance of DA methods, fu-

ture research will examine the use of LETKF-LaDA to

simultaneously assimilate both drifter position and

along-track SSH observations to improve the forecast

accuracy of the SSH field.

The LETKF-LaDA was implemented using a paral-

lel computing framework in order to accelerate the com-

putation of the analysis in anticipation of scaling to an

operational global ocean data assimilation system. An

additional factor affecting the stability of theLaDAfilter is

the number of drifter observations. A software limitation

in theMOM4p1 driftermodule prevents a large number of

drifters to be simulated. In future work we transition to

using MOM6 with an updated drifters module.

Conducting an OSSE using the ‘‘identical twin’’ ap-

proach is an important first step for validation of any

new DA method. However this type of experiment

ignores important concerns that are necessary to de-

termine the viability of the LETKF-LaDA for opera-

tional use, such as the presence of systematic model

errors. For example, in our experiments varying model

resolution, results indicated that the LETKF-LaDA is

sensitive to degraded model resolution. In future re-

search, we will apply the LETKF-LaDA using a more

realistic model of the latest GFDL MOM6, configured

with various resolutions that span a range from eddy

permitting to eddy resolving and forced with time-variant

near-surface wind forcing, and transit the whole system

into assimilating real historical drifter and hydrographic

profile data.
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